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a b s t r a c t

We consider an inverse problem for estimating an unknown time-dependent heat source HðtÞ in a heat
conduction equation Ttðx; tÞ ¼ Txxðx; tÞ þ HðtÞ, with the aid of an extra measurement of temperature at an
internal point. The Lie-group shooting method (LGSM) was used in the solution of this inverse problem;
however, when the data are acquired at an internal point we require to develop a two-stage Lie-group
shooting method (TSLGSM) to solve it. This novel approach is examined through numerical examples
to convince that it is a rather accurate and efficient method, whose estimation error is small even for
the identification of discontinuous and oscillatory heat source under large noise.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction temperature distribution Tðx; tÞ as well as the heat source HðtÞ that
In the parabolic type diffusion problems the source terms are
usually not easy to detect directly. In practice, there are many
researches on the inverse source identification problem to
determine the source terms since 1970s. This study aims to esti-
mate as accurately as possible the time-varying heat source by
solving an inverse heat conduction problem under an overspecified
internal data. The estimation is based on a transient temperature
measurement undertaken by a thermocouple on an internal point
of a heat conducting rod.

Applications of inverse methods span over many heat transfer
related topics. Sometimes the temperature and heat flux data on
the boundary are known and one wants to determine the material
properties. Those problems are often referred to as parameter iden-
tification problems in the literature [1,2]. Most inverse problems
belong to a family of problems that have an inherited ill-posed
property. Since the interest in these methods begun with one of
the first published paper by Stolz [3] in the 1960, the applications
nowadays range over many scientific fields. Those fields include
solid mechanics, fluid dynamics and heat transfer, to name only
a few.

The parameter determination in partial differential equations
from overspecified data play a crucial role in applied mathematics
and physics. These problems are widely encountered in the model-
ing of physical phenomena [4–7]. Here, we consider an inverse
problem of finding an unknown heat source HðtÞ in a one-dimen-
sional heat conduction equation, of which one needs to find the
ll rights reserved.
simultaneously satisfy

@2Tðx; tÞ
@x2 ¼ @Tðx; tÞ

@t
� HðtÞ; 0 < x < ‘;0 < t 6 tf ; ð1Þ

Tð0; tÞ ¼ F0ðtÞ; Tð‘; tÞ ¼ F‘ðtÞ; ð2Þ
Tðx;0Þ ¼ f ðxÞ: ð3Þ

Because the above problem has an unknown function HðtÞ, it
cannot be solved directly. In the above, ‘ is a length of the heat con-
ducting rod, and tf is a terminal time.

A new method will be developed to estimate the unknown heat
source HðtÞ of the above inverse problem, which is subjected to the
above boundary conditions and initial condition, as well as an
overspecified temperature measurement at an internal point xm:

Tðxm; tÞ ¼ FmðtÞ: ð4Þ

For the inverse problem governed by Eqs. (1)–(4) there are
many studies as can be seen from the papers by Cannon and
Duchateau [8] for identifying HðuÞ, and Savateev [9] and Borukhov
and Vabishchevich [10] for identifying Hðx; tÞ with additive or
seperable space and time. Many researchers sought the heat source
as a function of only space or time, for example, Farcas and Lesnic
[11], Ling et al. [12], and Yan et al. [13].

The model problem presented here used to describe a heat
transfer process with a time-dependent source produces the tem-
perature at a given point xm in the spatial domain at time t. Thus,
the purpose of solving this inverse problem can be viewed as an in-
verse control problem to identify the source control parameter that
produces at any given time a desired temperature at a given point
xm in the spatial domain. The traditional approach in solving prob-
lems of this sort approximately consists in reduction to the first
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Nomenclature

A augmented matrix
a; b coefficients defined in Eqs. (29), (32), (38), (50)
f 2n-dimensional vector field in Eq. (14)
f̂ :¼ fðx̂; ŷÞ
f ðxÞ initial temperature function
F0ðtÞ left-boundary temperature function
F‘ðtÞ right-boundary temperature function
FmðtÞ temperature function at xm

F :¼ f̂=kŷk
F1 the first n components of F
F2 the last n components of F
F̂ðtiÞ :¼ rF0ðtiÞ þ ð1� rÞFmðtiÞ
F̂mðtiÞ :¼ FmðtiÞ þ sRðiÞ
g 2nþ 1-dimensional Minkowski metric
G an element of Lorentz group
Gi; i ¼ 1; . . . ;K elements of Lorentz group
GðrÞ an element of Lorentz group
GðxmÞ an element of Lorentz group
G0

0 the 00-th component of G
HðtÞ time-dependent heat source
Hi :¼ HðtiÞ
h right-hand sides of Eqs. (8) and (9)
ĥ1 :¼ hðð1� rÞxm; T̂1Þ
ĥ2 :¼ hðrxm þ ð1� rÞ‘; T̂2Þ
ĥi

1 the i-th component of ĥ1
I2n 2n-dimensional unit matrix
‘ length of rod
k � k Euclidean norm
M2nþ1 2nþ 1-dimensional Minkowski space
n number of discretized time points
r weighting factor
RðiÞ random numbers
s level of noise
SOoð2n;1Þ 2nþ 1-dimensional Lorentz group
soð2n;1Þ the Lie algebra of SOoð2n;1Þ
S temperature gradient
S temperature gradient vector of Si

S0 temperature gradient vector at x ¼ 0
S‘ temperature gradient vector at x ¼ ‘
Sm temperature gradient vector at x ¼ xm

Ŝ1 :¼ rS0 þ ð1� rÞSm

Ŝ2 :¼ rSm þ ð1� rÞS‘
SiðxÞ :¼ Sðx; tiÞ
t time
tf final time

ti :¼ iDt
Dt time stepsize
T temperature
T temperature vector of Ti

T0 temperature vector at x ¼ 0
T‘ temperature vector at x ¼ ‘
Tm temperature vector at x ¼ xm

T̂1 :¼ rT0 þ ð1� rÞTm

T̂2 :¼ rTm þ ð1� rÞT‘
TiðxÞ :¼ Tðx; tiÞ
T̂ i

1 the i-th component of T̂1

T̂ i
2 the i-th component of T̂2

x space variable
Dx mesh size of x
xm temperature measuring point
xy :¼ xmkym � y0k
x̂ :¼ ð1� rÞxm

X 2nþ 1-dimensional augmented vector
Xk numerical value of X at the k-th spatial step
X0 the value of X at x ¼ 0
Xm the value of X at x ¼ xm

y 2n-dimensional vector defined in Eq. (14)
y0 the value of y at x ¼ 0
ym the value of y at x ¼ xm

y‘ the value of y at x ¼ ‘
kŷ1k :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT̂1k2 þ kŜ1k2

q
kŷ2k :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT̂2k2 þ kŜ2k2

q
Z :¼ expðxy=gÞ
Z1 :¼ expðxmkym � y0k=g1Þ
Z2 :¼ expðð‘� xmÞky‘ � ymk=g2Þ

Greek symbols
� converegnce criterion
g coefficient defined in Eqs. (35) and (47)
g1 coefficient defined in Eq. (64)
g2 coefficient defined in Eq. (72)
h intersection angle of ym � y0 and y0

h1 intersection angle of ym � y0 and y0

h2 intersection angle of y‘ � ym and ym

Subscripts and superscripts
i index
K index
t transpose
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kind Volterra integral equation, and then some regularization tech-
niques are used to solve the ill-posed problem. According to this
type formulation, Maalek Ghaini [14] has proven the existence,
uniqueness and stability problems; however, no numerical proce-
dures and examples were presented. More interestingly, Yan
et al. [13] have transformed the above problem into a three-point
boundary value problem.

The heat source identification of HðtÞ is one of the inverse prob-
lems for the applications in heat conduction engineering by detect-
ing the thermal source. The inverse problems are those in which
one would like to determine the causes for an observed effect.
One of the characterizing properties of many of the inverse prob-
lems is that they are usually ill-posed, in the sense that a solution
that depends continuously on the data do not exist. For this inverse
problem of heat source identification the observed effect is the
temperature measurement Tðxm; tÞ at an internal point x ¼ xm on
the rod. We are interesting to search the cause of the unknown
heat source HðtÞ in Eq. (1), which induces the effect we observe
through measurement. For the inverse problems the measurement
error may often lead to a large discrepancy from the true cause.

Our approach of the above inverse problem is by using a semi-
discretization together with the group-preserving scheme (GPS)
developed previously by Liu [15] for ordinary differential equations
(ODEs). Recently, Liu [16–18] has extended the GPS technique to
solve the boundary value problems (BVPs), and the numerical re-
sults reveal that the Lie-group method is a rather promising tech-
nique to effectively calculate the two-point BVPs. In the
construction of the Lie-group method for the calculations of BVPs,
Liu [16] has introduced the idea of one-step GPS by utilizing the
closure property of Lie-group, and hence, the new shooting method
has been named the Lie-group shooting method (LGSM). Chang
et al. [19] have employed the LGSM to solve a backward heat con-
duction problem with a high performance. Liu [7] has employed
the LGSM technique to solve accurately the inverse heat conduc-
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tion problems of identifying nonhomogeneous heat conductivity
functions.

Recently, Liu [20] has developed a two-stage Lie-group shooting
method (TSLGSM) for three-point boundary value problems of sec-
ond-order ordinary differential equations. The above paper is
greatly extended the capability of shooting technique on the solu-
tions of BVPs. Developing here is a new TSLGSM for the inverse
problem of heat source identification governed by Eqs. (1)–(4).

It is interesting to note that the new method of TSLGSM does
not require any a priori regularization when applying it to the in-
verse problem of heat source identification, and also exhibits sev-
eral advantages than other methods. It would be clear that the new
method can greatly reduce the computational time and is very easy
to implement on the calculations of inverse problem of heat source
identification. Especially, the present method of TSLGSM would
provide much better computational results than others, which in
turns greatly suggest us to use the TSLGSM in the calculations of
this inverse problems.

2. Mathematical backgrounds

We will develop a numerical method to estimate the heat
source HðtÞ based on the numerical method of line, which leads
to a set of ODEs. In order to explore our new method in self-con-
tent, let us first briefly sketch the group-preserving scheme (GPS)
for ODEs and one-step GPS for the Lie-group in this section. The
readers may refer the author’s papers listed in the References for
a detailed treatment.

2.1. A semi-discretization

As that done by Chang et al. [21], Eq. (1) is transformed into the
following equations:
@Tðx; tÞ
@x

¼ Sðx; tÞ; ð5Þ

@Sðx; tÞ
@x

¼ @Tðx; tÞ
@t

� HðtÞ: ð6Þ

Then, by using a semi-discretization method to discretize the
quantities of Tðx; tÞ and Sðx; tÞ in the time domain, we can obtain a
system of ODEs for T and S with x as an independent variable. The
Lie-group method as first developed by Liu [22] for the parameter
estimation is extended and applied to the following discretized
equations:

@TiðxÞ
@x

¼ SiðxÞ; i ¼ 1; . . . ;n; ð7Þ

@SiðxÞ
@x

¼ Tiþ1ðxÞ � Ti�1ðxÞ
2Dt

� Hi; i ¼ 1; . . . ; n� 1; ð8Þ

@SnðxÞ
@x

¼ 3TnðxÞ � 4Tn�1ðxÞ þ Tn�2ðxÞ
2Dt

� Hn; ð9Þ

where Dt ¼ tf=n is a uniform time increment, and ti ¼ iDt are the
discretized times of which the measurement is sampling by a rate
Dt. TiðxÞ ¼ Tðx; tiÞ, SiðxÞ ¼ Sðx; tiÞ and Hi ¼ HðtiÞ are the discretized
quantities at the nodal points of time.

When i ¼ 1, the term T0ðxÞ appeared in Eq. (8) is determined
by the initial condition (3). While the central difference is used
in Eq. (8), we may use the backward difference in Eq. (9) at the
last time point in order to maintain the same second-order
accuracy.

The three known boundary conditions are given by

Tið0Þ ¼ F0ðtiÞ; i ¼ 1; . . . ;n; ð10Þ
TiðxmÞ ¼ FmðtiÞ; i ¼ 1; . . . ;n; ð11Þ
Tið‘Þ ¼ F‘ðtiÞ; i ¼ 1; . . . ; n; ð12Þ

which are obtained from Eqs. (2) and (4) by discretizations.
2.2. The GPS

Let us write Eqs. (7)–(9) as in a vector form:

y0 ¼ fðx; yÞ; ð13Þ

where the prime denotes the differential with respect to x, and

y :¼
T
S

� �
; f :¼

S
hðx; TÞ

� �
; ð14Þ

in which T ¼ ðT1; . . . ; TnÞt and S ¼ ðS1; . . . ; SnÞt . The components of h
represent the right-hand sides of Eqs. (8) and (9). The dependence
of h on x is due to the dependence of initial condition (3) on x.

When both the vector y and its magnitude kyk :¼
ffiffiffiffiffiffiffi
yty

p
¼ ffiffiffiffiffiffiffiffiffi

y � yp

were combined into a single augmented vector

X ¼
y
kyk

� �
; ð15Þ

Liu [15] has transformed Eq. (13) into an augmented system:

X0 ¼ AX :¼
02n�2n

fðx;yÞ
kyk

ftðx;yÞ
kyk 0

2
4

3
5X; ð16Þ

where A is an element of the Lie algebra soð2n;1Þ satisfying

Atgþ gA ¼ 0; ð17Þ

and

g ¼
I2n 02n�1

01�2n �1

� �
ð18Þ

is a Minkowski metric. Here, I2n is the identity matrix, and the
superscript t stands for the transpose.

The augmented variable X can be viewed as a point in the Min-
kowski space M2nþ1, satisfying the cone condition:

XtgX ¼ y � y � kyk2 ¼ 0: ð19Þ

Accordingly, Liu [15] has developed a group-preserving scheme
(GPS) to guarantee that each Xk locates on the cone:

Xkþ1 ¼ GðkÞXk; ð20Þ

where Xk denotes the numerical value of X at the discrete xk, and
GðkÞ 2 SOoð2n;1Þ satisfies

GtgG ¼ g; ð21Þ
detG ¼ 1; ð22Þ
G0

0 > 0; ð23Þ

where G0
0 is the 00-th component of G.
2.3. One-step Lie-group transformation

Throughout this paper we use the superscripted symbols y0 to
denote the value of y at x ¼ 0, ym to denote the value of y at
x ¼ xm, and y‘ the value of y at x ¼ ‘. We first consider the Lie-
group shooting method in the interval of x 2 ½0; xm�.

By sequentially applying scheme (20) on Eq. (16) with a speci-
fied left-boundary condition Xð0Þ ¼ X0 we can compute the solu-
tion XðxÞ by the GPS. Assuming that the spatial stepsize used in
the GPS is Dx ¼ xm=K , and starting from an augmented left-bound-
ary condition X0 ¼ ððy0Þt ; ky0kÞt–0 we will calculate the value
Xm ¼ ððymÞt ; kymkÞt at the right-boundary x ¼ xm.

By applying Eq. (20) step-by-step we can obtain

Xm ¼ GKðDxÞ � � �G1ðDxÞX0: ð24Þ
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However, let us recall that each Gi; i ¼ 1; . . . ;K , is an element of
the Lie-group SOoð2n;1Þ, and by the closure property of the Lie-
group, GKðDxÞ � � �G1ðDxÞ is also a Lie-group denoted by G. Hence,
from Eq. (24) it follows that

Xm ¼ GX0: ð25Þ

This is a one-step transformation from X0 to Xm.
It should be stressed that the one-step Lie-group transformation

property is usually not shared by other numerical methods, be-
cause those methods not necessarily belong to the Lie-group
schemes. This important property has first pointed out by Liu
[23] and used to solve the backward in time Burgers equation.
After that Liu [22] has used this concept to establish a one-step
estimation method to estimate the temperature-dependent heat
conductivity, and then extended to estimate thermophysical prop-
erties of heat conductivity and heat capacity [24–26].

The remaining problem is how to calculate G. While an exact
solution of G is not available, we can calculate G through a numer-
ical method by a generalized mid-point rule, which is obtained
from an exponential mapping of A by taking the values of the argu-
ment variables of A at a generalized mid-point. The Lie-group gen-
erated from such an A 2 soð2n;1Þ by an exponential mapping is

GðrÞ ¼
I2n þ ða�1Þ

kf̂k2 f̂ f̂t bf̂
kf̂k

bf̂t

kf̂k
a

2
4

3
5; ð26Þ

where

ŷ ¼ ry0 þ ð1� rÞym; ð27Þ
f̂ ¼ fðx̂; ŷÞ; ð28Þ

a ¼ cosh
xmkf̂k
kŷk

 !
; b ¼ sinh

xmkf̂k
kŷk

 !
: ð29Þ

Here, we use the left-side y0 ¼ ðTð0Þ; Sð0ÞÞ and the right-side
ym ¼ ðTðxmÞ; SðxmÞÞ through a suitable weighting factor r to calcu-
late G, where r 2 ð0;1Þ is a parameter to be determined and
x̂ ¼ ð1� rÞxm. To stress its dependence on r we have denoted this
G by GðrÞ.

2.4. A Lie-group mapping between two points on the cone

Let us define a new vector

F :¼ f̂
kŷk ; ð30Þ

such that Eqs. (26) and (29) can also be expressed as

G ¼
I2n þ a�1

kFk2 FFt bF
kFk

bFt

kFk a

2
4

3
5; ð31Þ

a ¼ coshðxmkFkÞ; b ¼ sin hðxmkFkÞ: ð32Þ

From Eqs. (15), (25) and (31) it follows that

ym ¼ y0 þ gF; ð33Þ

kymk ¼ aky0k þ b
F � y0

kFk ; ð34Þ

where

g :¼ ða� 1ÞF � y0 þ bky0kkFk
kFk2 : ð35Þ

Substituting F in Eq. (33), written as

F ¼ 1
g
ðym � y0Þ; ð36Þ
into Eq. (34) and dividing both the sides by ky0k > 0, we obtain

kymk
ky0k ¼ aþ b

ðym � y0Þ � y0

kym � y0kky0k ; ð37Þ

where, after inserting Eq. (36) for F into Eq. (32), a and b are now
written as

a ¼ cosh
xmkym � y0k

g

� �
; b ¼ sin h

xmkym � y0k
g

� �
: ð38Þ

Let

cos h :¼ ðy
m � y0Þ � y0

kym � y0kky0k ; ð39Þ

xy :¼ xmkym � y0k; ð40Þ

where 0 6 h 6 p is the intersection angle between vectors ym � y0

and y0, and thus from Eqs. (37) and (38) it follows that

kymk
ky0k ¼ cosh

xy

g

� �
þ cos h sin h

xy

g

� �
: ð41Þ

Upon defining

Z :¼ exp
xy

g

� �
; ð42Þ

from Eq. (41) we obtain a quadratic equation for Z:

ð1þ cos hÞZ2 � 2kymk
ky0k Z þ 1� cos h ¼ 0: ð43Þ

On the other hand, by inserting Eq. (36) for F into Eq. (35) we
obtain

kym � y0k2 ¼ ða� 1Þðym � y0Þ � y0 þ bky0kkym � y0k: ð44Þ

Dividing both sides by ky0kkym � y0k and using Eqs. (38), (39),
(40) and (42) we obtain another quadratic equation for Z:

ð1þ cos hÞZ2 � 2 cos hþ ky
m � y0k
ky0k

� �
Z þ cos h� 1 ¼ 0: ð45Þ

From Eqs. (43) and (45), the solution of Z is found to be

Z ¼ ðcos h� 1Þky0k
cos h ky0k þ kym � y0k � kymk : ð46Þ

From Eqs. (42) and (40) it follows that

g ¼ xmkym � y0k
ln Z

: ð47Þ

Therefore, we come to an important result that between any
two points ðy0; ky0kÞ and ðym; kymkÞ on the cone, there exists a
Lie-group element G 2 SOoð2n;1Þ mapping ðy0; ky0kÞ onto
ðym; kymkÞ, which is given by

ym

kymk

� �
¼ G

y0

ky0k

" #
; ð48Þ

where G is given by the following equations:

GðxmÞ ¼
I2n þ a�1

kFk2 FFt bF
kFk

bFt

kFk a

2
4

3
5; ð49Þ

a ¼ coshðxmkFkÞ; b ¼ sinhðxmkFkÞ; ð50Þ

F ¼ 1
g
ðym � y0Þ ¼ ln Z

xm

ym � y0

kym � y0k : ð51Þ

In view of Eqs. (46) and (39), it can be seen that G is fully deter-
mined by y0 and ym.

It should be stressed that the above G is different from the one
in Eq. (26). In order to feature its property as a Lie-group mapping
between the quantities spanned a whole length xm we write it to
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be GðxmÞ. Conversely, GðrÞ is a function of r. However, these two
Lie-group elements GðrÞ and GðxmÞ are both indispensable in our
development of the TSLGSM in the next section for the inverse
problem of heat source identification.

3. Two-stage Lie-group shooting method

From Eqs. (7)–(12) it follows that

T0 ¼ S; ð52Þ
S0 ¼ hðx; TÞ; ð53Þ

Tð0Þ ¼ T0; TðxmÞ ¼ Tm; ð54Þ

Sð0Þ ¼ S0; SðxmÞ ¼ Sm; ð55Þ

where T0 and Tm are known from Eqs. (10) and (12), but S0 and Sm

are two unknown vectors. Below we derive algebraic equations to
solve them.

By using Eq. (14) for y we have

y0 ¼ T0

S0

" #
; ym ¼ Tm

Sm

� �
; ð56Þ

and further inserting them into Eq. (36) yields

F :¼
F1

F2

� �
¼ 1

g
Tm � T0

Sm � S0

" #
: ð57Þ

Comparing Eq. (57) with Eq. (30) and using Eqs. (14) and (56),
we can obtain

Tm ¼ T0 þ g1

kŷ1k
Ŝ1; ð58Þ

Sm ¼ S0 þ g1

kŷ1k
ĥ1; ð59Þ

where

kŷ1k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT̂1k2 þ kŜ1k2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
krT0 þ ð1� rÞTmk2 þ krS0 þ ð1� rÞSmk2

q
;

ð60Þ
ĥ1 ¼ hðð1� rÞxm; T̂1Þ; ð61Þ

cos h1 :¼ ðTm � T0Þ � T0 þ ðSm � S0Þ � S0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTm � T0k2 þ kSm � S0k2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT0k2 þ kS0k2

q ; ð62Þ

Z1 ¼
ðcos h1 � 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT0k2 þ kS0k2

q
cos h1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT0k2 þ kS0k2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTm � T0k2 þ kSm � S0k2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTmk2 þ kSmk2

q ;

ð63Þ

g1 ¼
xm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTm � T0k2 þ kSm � S0k2

q
ln Z1

: ð64Þ

For the use in later ĥ1 is written explicitly as

ĥ1 ¼

T̂2
1�T̂0

1
2Dt � H1

..

.

T̂n
1�T̂n�2

1
2Dt � Hn�1

3T̂n
1�4T̂n�1

1 þT̂n�2
1

2Dt � Hn

2
6666664

3
7777775
; ð65Þ

where T̂ i
1 ¼ rF0ðtiÞ þ ð1� rÞFmðtiÞ; i ¼ 1; . . . ;n, and T̂0

1 ¼ f ðð1� rÞxmÞ.
We must stress that ĥ1 is an unknown vector due to the appearence
of unknown heat source Hi.

Similarly, we can obtain the Lie-group shooting equations in the
interval of x 2 ½xm; ‘�:
T‘ ¼ Tm þ g2

kŷ2k
Ŝ2; ð66Þ

S‘ ¼ Sm þ g2

kŷ2k
ĥ2; ð67Þ

where

kŷ2k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT̂2k2 þ kŜ2k2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
krTm þ ð1� rÞT‘k2 þ krSm þ ð1� rÞS‘k2

q
; ð68Þ

ĥ2 ¼ hðrxm þ ð1� rÞ‘; T̂2Þ; ð69Þ

cos h2 :¼ ðT‘ � TmÞ � Tm þ ðS‘ � SmÞ � Smffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT‘ � Tmk2 þ kS‘ � Smk2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTmk2 þ kSmk2

q ; ð70Þ

Z2 ¼
ðcos h2 � 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTmk2 þ kSmk2

q
cos h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTmk2 þ kSmk2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT‘ � Tmk2 þ kS‘ � Smk2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT‘k2 þ kS‘k2

q ;

ð71Þ

g2 ¼
ð‘� xmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT‘ � Tmk2 þ kS‘ � Smk2

q
ln Z2

: ð72Þ

The above S0, Sm, S‘, ĥ1 and ĥ2 are unknown vectors but the
three vectors T0, Tm, and T‘ are known and given by

T0 ¼

F0ðt1Þ
..
.

F0ðtnÞ

2
664

3
775; Tm :¼

Fmðt1Þ
..
.

FmðtnÞ

2
664

3
775; T‘ :¼

F‘ðt1Þ
..
.

F‘ðtnÞ

2
664

3
775: ð73Þ

We can evaluate these unknown vectors as follows. By using

Ŝ1 ¼ rS0 þ ð1� rÞSm; Ŝ2 ¼ rSm þ ð1� rÞS‘; ð74Þ

from Eqs. (58), (59), (66) and (67) we can solve

ĥ1 ¼
kŷ1k
g1
ðSm � S0Þ; ð75Þ

S0 ¼ kŷ1k
g1
ðTm � T0Þ � ð1� rÞg1

kŷ1k
ĥ1; ð76Þ

Sm ¼ kŷ2k
g2
ðT‘ � TmÞ � ð1� rÞg2

kŷ2k
ĥ2; ð77Þ

S‘ ¼ kŷ2k
g2
ðT‘ � TmÞ þ rg2

kŷ2k
ĥ2; ð78Þ

where

ĥ2 ¼

T̂2
2�T̂0

2
2Dt � H1

..

.

T̂n
2�T̂n�2

2
2Dt � Hn�1

3T̂n
2�4T̂n�1

2 þT̂n�2
2

2Dt � Hn

2
6666664

3
7777775
¼

ðT̂2
2�T̂0

2Þðĥ
1
1þH1Þ

T̂2
1�T̂0

1
� H1

..

.

ðT̂n
2�T̂n�2

2 Þðĥn�1
1 þHn�1Þ

T̂n
1
�T̂n�2

1
� Hn�1

ð3T̂n
2�4T̂n�1

2 þT̂n�2
2 Þðĥn

1þHnÞ
3T̂n

1
�4T̂n�1

1
þT̂n�2

1
� Hn

2
6666666664

3
7777777775

ð79Þ

with T̂ i
2 ¼ rFmðtiÞ þ ð1� rÞF‘ðtiÞ; i ¼ 1; . . . ; n and T̂0

2 ¼ f ðrxm þ
ð1� rÞ‘Þ, can be obtained from ĥ1.

Because T0, Tm and T‘ are all available, for a specified r, we can
use Eqs. (76)–(79), starting from an initial guess, saying
ðS0; Sm; S‘Þ ¼ ð0;0;0Þ, to generate a new ðS0; Sm; S‘Þ, until they con-
verge according to a given stopping criterion:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kS0

iþ1 � S0
i k

2 þ kSm
iþ1 � Sm

i k
2 þ kS‘iþ1 � S‘ik

2
q

6 �; ð80Þ

which means that the norm of the difference between the iþ 1-th
and the i-th iterations of ðS0; Sm; S‘Þ is smaller than �.

If the new ĥ1 is available, then by Eq. (65) we can calculate Hi by

Hi ¼
F̂ðtiþ1Þ � F̂ðti�1Þ

2Dt
� ĥi

1; i ¼ 1; . . . ; n� 1; ð81Þ

Hn ¼
3F̂ðtnÞ � 4F̂ðtn�1Þ þ F̂ðtn�2Þ

2Dt
� ĥn

1; ð82Þ
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Fig. 1. For example 1: (a) plotting the error of mis-matching the target with respect
to r in a finer interval, (b) comparing the numerical result with exact result, and (c)
displaying the estimation error.
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Fig. 2. For example 2: (a) comparing the numerical result with exact result and (b)
displaying the estimation error.
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where ĥi
1 denotes the i-th component of ĥ1 and F̂ðtiÞ ¼ rF0ðtiÞþ

ð1� rÞFmðtiÞ is known for the specified r.
Under the above new left-boundary condition S0 together with

the known boundary condition of T0 and the new Hi, we can return
to Eqs. (7)–(9) and integrate them to obtain TðxmÞ and SðxmÞ. The
above process can be done for all r in the interval of r 2 ð0;1Þ.
Among these solutions we can pick up the best r, which leads to
the smallest error of

min
r2ð0;1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTðxmÞ � Tmk2

q
; ð83Þ

such that the overspecified condition in Eq. (4) can be fulfilled as
best as possible.

When the process terminates, by inserting the best r and ĥi
1 into

Eqs. (81) and (82) we can estimate the time-dependent heat source
HðtÞ at the discretized times ti. The above method will be called a
two-stage Lie-group shooting method (TSLGSM).

4. Numerical examples

Now, we are ready to apply the TSLGSM on the estimations of
HðtÞ through the tests of numerical examples. We are concerned
with the stability of TSLGSM by adding different levels of random
noise on the measured data:

F̂mðtiÞ ¼ FmðtiÞ þ sRðiÞ; ð84Þ

where FmðtiÞ is the exact data, s specifies the level of noise, and RðiÞ
are random numbers in [�1,1].

4.1. Example 1

Let us first consider a simple inverse heat source problem with
an exact solution of HðtÞ ¼ �6t, where Tðx; tÞ is given by

Tðx; tÞ ¼ e�t sin xþ 3tx2 þ 1
4

x4: ð85Þ

The given data F0ðtÞ, F‘ðtÞ, f ðxÞ and FmðtÞ can be computed
from the exact solution. In this case we take ‘ ¼ 0:1 and with-
out exception xm ¼ ‘=2. In addition we take tf ¼ 1, Dt ¼ 0:01
and Dx ¼ 0:002.

Before employing the numerical method of TSLGSM to calcu-
late this example we use it to demonstrate how to pick up the
best r as specified by Eq. (83). In the calculation we fixed the
stopping criterion used in Eq. (80) to be � ¼ 10�3. We plot the
error of mis-matching the target with respect to r in Fig. 1(a)
in a finer range of 0:4 < r < 0:6. It can be seen that there is a
minimum point. Under this r the left-boundary condition and
the calculated Hi derived from the TSLGSM provide the best
match to the right-boundary condition at xm. Then we can use
the given T0 and the estimated S0 to calculate the whole temper-
ature in the rod. In Fig. 1(b) we compare the exact H with the
numerical one, of which the numerical error as shown in
Fig. 1(c) is smaller than 10�2.

4.2. Example 2

In order to further explore the applicability of this TSLGSM we
consider a slightly complex problem with Tðx; tÞ given by

Tðx; tÞ ¼ x2 þ 2t þ sinð2ptÞ; ð86Þ

and HðtÞ given by HðtÞ ¼ 2p cosð2ptÞ.
In Fig. 2(a) we compare the numerical solution of H with the ex-

act one in the time interval of t 2 ½0;1�. These two curves are al-
most coincident, and the error is plotted in Fig. 2(b), which is
smaller than 5� 10�3.



1

2

3

4

H

0.0 0.4 0.8 1.2 1.6 2.0
t

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

Es
tim

at
io

n 
er

ro
r

Estimation with s=0

Estimation with s=0.01

Exact

a

b

Fig. 4. For example 4: (a) comparing the numerical results under s = 0 and
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4.3. Example 3

Let us consider the following example with HðtÞ given by

HðtÞ ¼

2 t 2 ½0;0:3Þ;
4 t 2 ½0:3;0:6Þ;
2 t 2 ½0:6;0:9Þ;
4 t 2 ½0:9;1:2Þ;
2 t 2 ½1:2;1:5Þ;
4 t 2 ½1:5;2�:

8>>>>>>>><
>>>>>>>>:

ð87Þ

Here, we let tf ¼ 2. Subjecting to the boundary conditions:

Tð0; tÞ ¼ 2t; Tð‘; tÞ ¼ 2t þ ‘; ð88Þ

and the initial condition

Tðx;0Þ ¼ x; ð89Þ

we can apply the TSLGSM to calculate this example. However, the
temperature data at x ¼ xm is calculated by using the Lie-group
shooting method together with the fourth-order Runge–Kutta
method (RK4) with Dt ¼ 0:02 and Dx ¼ 0:01. The data Fm are shown
in Fig. 3(a).

Yan et al. [13] have calculated a similar example by using the
method of fundamental solutions together with a Tikhonov regu-
larization method. However, the numerical results as shown in
Fig. 7 of the above cited paper are not so good. Because the heat
conduction is an irreversible process in time, the solution gets
smooth rapidly in time. The characteristic of solution in time
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Fig. 3. For example 3: (a) plotting the data Fm, (b) comparing the numerical results
under s = 0 and s = 0.001 with exact result, and (c) displaying the estimation error.
may be smooth as shown in Fig. 4(a) for a certain case. It is hard
to use the smooth data to recover the non-smooth heat source.

In Fig. 3(b) we compare the numerical solution of H with the ex-
act one given by Eq. (87) in the time interval of t 2 ½0;2�. These two
curves with dashed line and solid line are coincident well, and the
error is plotted in Fig. 3(c), which is smaller than 0.07. In the case
by adding a noise with a level s ¼ 0:001 on the input data, we plot
the numerical result in Fig. 3(b) by the dashed-dotted line. It can be
seen that this method is robust against the noise.

4.4. Example 4

When the internal measuring point of temperature can be put
as close as possible to the right-boundary we can calculate the
temperature gradient at x ¼ ‘ by

@Tð‘; tÞ
@x

� Tð‘; tÞ � Tðxm; tÞ
‘� xm

: ð90Þ

Thus the right-boundary condition of Si is available. From Eqs.
(58) and (59) with xm ¼ ‘ we can solve

S0 ¼ kŷ1k
g1
ðT‘ � T0Þ � ð1� rÞg1

kŷ1k
ĥ1; ð91Þ

ĥ1 ¼
kŷ1k
g1
ðS‘ � S0Þ: ð92Þ

By the same token we can develop a one-stage LGSM for this
case. For a more detailed description of this method for estimating
the time-dependent heat conductivity one may refer the paper by
Liu [6].

In order to test this method on the estimation of discontinuous
and oscillatory heat source, let us consider

HðtÞ ¼
2 t 2 ½0; 0:3Þ;
4 t 2 ½0:3;0:6Þ;
2þ sinð10ptÞ t 2 ½0:6;2�:

8><
>: ð93Þ

Here, we let tf ¼ 2 and subject it to the same boundary
conditions and initial condition as that in Eqs. (88) and (89). We
can apply the one-stage LGSM to calculate this example.
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The data FmðtiÞ are obtained by applying a numerical method,
for example the RK4, on the corresponding direct problem, suppos-
ing that HðtÞ is known from Eq. (93). In this identification of HðtÞ
we have fixed Dx ¼ 0:01 and Dt ¼ 0:01 for the un-noised case,
and Dx ¼ 0:01 and Dt ¼ 0:05 for the noised case. In Fig. 4(a) we
compare the numerical solution of HðtÞwith exact solution. The er-
rors are rather small in the order of 10�2 as shown in Fig. 4(b).
From this example one may appreciate the accuracy of the LGSM
provided here even for identifying a highly discontinuous and
oscillatory parameter HðtÞ in the above. By adding a noise with
s ¼ 0:01 the result as shown in Fig. 4(a) by the dashed-dotted line
reveals that it is more robust against the noise than the TSLGSM. In
this case the accuracy is not so good as in the first two examples,
whose reason is attributed to that this function of HðtÞ is more dif-
ficult to estimate, and the input data FmðtiÞ are not exact.

5. Conclusions

In order to estimate the time-dependent heat source under an
extra measured temperature at an internal point, we have em-
ployed the TSLGSM to derive algebraic equations and solved them
by iteration process. Numerical examples were worked out, which
show that our TSLGSM is applicable even under a large noise on the
measured data. Through this study, we can conclude that the new
estimation method is accurate, effective and stable. Its numerical
implementation is simple and the computational cost is low. When
an internal measurement of temperature is near to the boundary,
the one-stage LGSM is suggested, because the one-stage LGSM is
less complex than the TSLGSM and its robustness is also good than
the TSLGSM. According to these facts, this TSLGSM and one-stage
LGSM can be used in practice as an accurate and effective mathe-
matical tool to estimate the unknown time-dependent heat source.
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